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PERFORMANCE OF AN I[NL;ET HAVING A VARIABLE-ANGIE TWO-DIMENSIONAL 

FOR APPLICATION TO REDUCED ENGINE ROTATIVE SPEEDS: 

MACH NUMBERS 0.66, 1.5, 1.7,  AND 2.0 

By John L. Allen 

SUMMARY 

The performance of a two-dimensional s ide  i n l e t  embodying a tech- 
nique of varying compression-surface angle while r e t a i n i n g  a f ixed -  
geometry d i f f u s e r  w a s  determined a t  Mach numbers of 0.66, 1.5, 1 .7 ,  and 
2.0 at zero angle  of a t t a c k .  
d i f f u s e r  contour i n  t h e  conventional manner. However, f o r  l a r g e r  ramp 
angles only t h e  ramp forward of t h e  th roa t  b leed  s l o t  r o t a t e d  (leading- 
edge p i v o t )  and the  d i f f u s e r  contour a f t  of t h e  s l o t  reg ion  remained 
f ixed .  The higher ramp angles r e s u l t e d  i n  s t e p  inc reases  i n  d i f f u s e r  
area i n  t h e  t h r o a t - s l o t  reg ion  t h a t  were 1.24 and 1.73 times the  t h r o a t  
areas f o r  t h e  17' and 22' ramp angles,  respec t ive ly .  

A 12O compression ramp was f a i r e d  i n t o  t h e  

The mass flow captured by the  i n l e t  was decreased s u f f i c i e n t l y  by 
shock s p i l l a g e  due t o  increas ing  ramp angle t o  s a t i s f y  t u r b o j e t  engine 
x'indmiiling a i r f l o w  requirements with to ta l -pressure  f l o w  d i s t o r t i o n s  
a t  t h e  d i f f u s e r  e x i t  less than those f o r  design ramp angle and maximum 
engine a i r f low.  

Severe ramp boundary-layer separa t ion  occurred a t  Mach 2.0 and t o  a 
lesser e x t e n t  a t  Mach 1 .7 .  This separation apparent ly  decreased t h r o a t  
b leed  e f f ec t iveness .  
12O t o  220 decreased from 0.865 t o  0.74 at a Mach number of 2.0, from 
0.965 t o  0.925 a t  Mach 1.7, and only from0.987 t o  0.964 at Mach 1.5. 

Peak p res su re  recovery f o r  a ramp angle  change from 

INTRODUCTION 

If a t u r b o j e t  engine becomes inoperative a t  supersonic speeds (e.g., 
by flameout),  t h e  a i r f l o w  requ i r ed  f o r  idle  o r  windmilling r o t a t i v e  speed 
is about one-half t h a t  f o r  maximum o r  ra ted speed. Since most e f f i c i e n t  
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i n l e t s  do not' have a su f f i c i en t  s t a b l e  (buzz free) mass-flcw range f o r  
t h i s  amount of normal shock sp i l l age ,  o ther  s p i l l a g e  systems must be 
used. One method is t o  u s e  a bypass arrangement f o r  air  i n  excess of 
engine requirements ( re f .  1). However, the s i z e  of t he  bypass f o r  50- 
percent s p i l l a g e  may be  l a r g e r  than f e a s i b l e  f o r  s t r u c t u r a l  and o the r  
reasons. Oblique- o r  conical-shock s p i l l a g e  can be  used, b u t  they p resen t  
some performance and mechanical problems. For two-dimensional i n l e t s  
having a t h r o a t  bleed s l o t  the  fol lowing 'arrangement may be advantageous : 

'Rated speed Bleed flow 

I n  essence only t h e  compression-surface angle  is  increased (leading-edge 
p i v o t  p o i n t )  and the  subsonic d i f f u s e r  remains i n  a f i x e d  p o s i t i o n  using 
t h e  th roa t  s l o t  as a d iv id ing  region.  The cusp-shaped base of t he  ramp 
may help e s t a b l i s h  a trapped-vortex type of f low suggested i n  re ference  
2 and thus promote reattachment of t h e  s t agna t ion  s t reaml ine  and reduce 
the  dumping o r  pressure  l o s s  of the sudden area expansion. Reference 3 
repor t s  t h a t  vortex f low was found only when combined suc t ion  and in-  
j ec t ion  were used. Although the  d i f f u s e r  t o t a l -p re s su re  recovery was 
somewhat less than f o r  a conventional d i f f u s e r  (depending on the t h r o a t  
Mach number), t h e  e x i t  t o t a l -p re s su re  d i s t o r t i o n  w a s  improved. 
range of the  tests of  re ference  4 the  cusp shape w a s  not necessary without 
bleed; however, small amounts of bleed a t  the sides of t he  core  d i d  
energize a vortex and increase t h e  e f f i c i e n c y  of  t h e  sudden-expansion 
sec t ion  t o  near ly  t h e o r e t i c a l .  For the purpose suggested he re in  e f f i c i e n c y  
is  not too important, al though good d i s t o r t i o n  l e v e l s  are des i red .  

I n  t h e  

Depending on t h e  e f f i c i ency  levels obtained, the same concept could 
conceivably be  appl ied  as a var  iable-geometry in le t -engine  matching tech-  
nique. A l i g h t e r  weight i n l e t  would r e s u l t ,  s ince  only the ramp would 
need mechanical ac tua t ion  and the  a f t  d i f f u s e r  would not r equ i r e  p a r a l l e l  
s ides .  

The r e s u l t s  repor ted  he re in  were obtained i n  a 1/6-scale s i d e - i n l e t  

Ramp angles of 12O, 1 7 O ,  and 2 2 O  were t e s t e d  a t  
model (similar t o  t h e  previous sketch)  i n  t h e  NACA Lewis 8- by 6-foot 
supersonic wind tunnel .  
zero angle  of a t t a c k  a t  f l i g h t  Mach numbers of 0.66, 1.5, 1 .7 ,  and 2.0.  
The 12O ramp w a s  f a i r e d  wi th  the  d i f f u s e r  su r face  i n  t h e  conventional 
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manner wi th  a b leed  s l o t  i n  t h e  t h r o a t  region. 
r e s u l t e d  i n  sudden-expansion reg ions  between t h e  ramp base and f ixed -  
geometry d i f f u s e r .  

The 17O and 22' p o s i t i o n s  

a r e a  

i n l e t  cap ture  area, 0.283 sq f t  

d i f f u s e r - e x i t  area, s t a t i o n  3, 0.196 sq f t  

boundmy-layer s p l i t t e r  he ight  

d i f f u s e r  length  

Mach number 

- - - 7  n-,,, n n C -  wuo--l L" w L a UT? 

mass-flow r a t i o ,  ~ V A / ~ O V + ~  

t o t a l  p ressure  

to t a l -p re s su re  d i s t o r t i o n  parameter, numerical d i f f e rence  between 
maximum and minimum rake  t o t a l  p ressures  d iv ided  by average 
t o t a l  p ressure ,  percent  

s t a t i c  p re s su re  

dynamic pressure ,  $ P M ~  

r a d i u s  

ve loc i ty  

weight flow, lb/sec 

co r rec t ed  rate of weight flow per u n i t  area, ( lb / sec) / sq  f t  

r a t i o  of s p e c i f i c  h e a t s  

r a t i o  of t o t a l  p re s su re  t o  NACA standard sea - l eve l  s t a t i c  pres -  
s u r e  of 2116 lb/sq f t  

fuse l age  boundary-layer thickness 

sudden-expans ion e f f i c i ency  - 



e r a t i o  of t o t a l  temperature t o  NACA s tandard  sea - l eve l  s t a t i c  t e m -  
pe ra tu re  of 518.7O R, a l s o  1/2 equiva len t  con ica l  expansion angle  
of d i f f u s e r  

P mass dens i ty  of a i r  

Subscripts:  

a v  

b 

f 

i 

U B X  

min 

t h  

0 

2 

3 

4 

average 

bleed 

f i n a l  

i n i t i a l  

maximum 

minimum 

t h r o a t  

f r e e  stream 
1 diffuser  i n l e t  2- i n .  a f t  of l i p  
4 

d i f f u s e r  e x i t  

mass-flow s t a t i o n  

MODEL DETAILS AND INSTRUMENTATION 

General Descr ip t ion  of Model 

Photographs of t h e  1/6-scale model are shown i n  f i g u r e  1, and a 
schematic drawing is given i n  f i g u r e  2 .  Only one of  t h e  twin two- 
dimensional compression-surface i n l e t s  w a s  incorporated on t h e  model, 
s i n c e  a sepa ra t e  duct was t o  be used f o r  each of t h e  twin engines. 
open-nose boundary-layer d i v e r t e r  separa ted  t h e  compression ramp from t h e  
fuselage by about 
given i n  r e fe rence  5. 

An 

A d e t a i l e d  d e s c r i p t i o n  of t h e  model i s  h/$ = 1.33. 

I n  order t o  s i m u l a t e  a variable-angle ramp p i v o t i n g  about t he  lead ing  
edge, f i x e d  ramps of 17O and 2 2 O  were t e s t e d  i n  a d d i t i o n  t o  t h e  ramp wi th  
the design angle of 12O. The r e a r  o r  i n t e r n a l  ramp su r face  af t  of t h e  
throat  bleed s l o t  remained f i x e d  f o r  t he  various ramp angles,  as shown 
schematically i n  f i g u r e  3 .  The r e s u l t i n g  l a r g e  s t e p  changes i n  d i f f u s e r -  
area v a r i a t i o n  a r e  shown i n  f i g u r e  4 .  The i n t e r n a l  con t r ac t ion  var ied  
s l i g h t l y  wi th  ramp angle and exceeded the  s t a r t i n g  l i m i t ' a t  t h e  Mach 



numbers t e s t e d .  
p o s i t i o n  were not dupl ica ted  f o r  t h e  17' and 22O p o s i t i o n s  ( f i g .  1). 

The generous corner f i l l e t s  of t h e  12' design ramp 

The 1 2 O  ramp angle is  not the optimum compression angle at Mach 2.0, 
bu t  w a s  taken as t h e  design angle i n  order t o  use  an  e x i s t i n g  model. 

The t h r o a t  s l o t  f o r  t he  12' ramp was the  same as conf igura t ion  C4V 

A i r  en i e r ing  ihe bieeci-fiow 
of re ference  5; however, a rearward fac ing  scoop o r  vent f o r  b leed  flow 
w a s  used on each s i d e  WI" iiie ramp ( f i g .  3 ) .  
chamber beneath t h e  ramp was discharged through t h e  vents as w e l l  as 
through t h e  i n t e r n a l  model ducting system. 
was measured. The r a t i o  of minimum bleed-slot  area t o  capture  area w a s  
0.11, 0.125, and 0.116 f o r  t he  120, 17O, and 22' ramp angles,  r e s p e c t i v e l y .  
To a i d  i n  eva lua t ing  t h e  experimental r e s u l t s ,  t he  fol lowing t a b l e  is 
presented: 

Only t h e  ducted b leed  flow 

22 I 1.73 1 3.0 1 5.5 

The r a t i o ,  2/Zl2o, is the  r a t i o  of d i f fuse r  l eng th  t o  t h a t  f o r  the 12' 
ramp t h a t  would be r equ i r ed  i f  the  same ove r -a l l  d i f f u s e r  expansion angle,  
28 = 1.80, were des i r ed  from the t h r o a t  t o  t h e  e x i t  ( s t a t i o n  2 t o  3).  
Conversely, if t he  o r i g i n a l  &iffuser i e & h  vere r;eta'ine& and t h e  dlff i iser  
area were f a i r e d  from t h e  th roa t  t o  the e x i t ,  t h e  o v e r - a l l  d i f f u s e r  ex- 
pansion angle  would increase  as shown. 
ausden-expansion s e c t i o n  w a s  computed f 'mm t h e  r e l a t i =  

The t h e o r e t i c a l  e f f i c i e n c y  of t he  

When pf - pi is  obtained from t h e  change i n  momentum between A i  and 

Af and uniform p r o f i l e s  and incompressible flow a r e  assumed at t h e  two 
stat  ions : 

2 v = -  L 



Equation (1) can a l s o  be expressed i n  terms of to t a l -p re s su re  loss :  

Instrumentation 

The d i f f u s e r  e x i t ,  s t a t i o n  3, was s e l e c t e d  as the  compressor-inlet 
s t a t i o n  r a t h e r  than  s t a t i o n  4, which was used i n  re ference  5, s i n c e  t h e  
long duct would tend t o  reduce t h e  to t a l -p re s su re  d i s t o r t i o n  and camouflage 
t h e  e f f e c t  of sudden expansion. Consequently, a 25-tube area-weighted 
to t a l -p re s su re  rake  was i n s t a l l e d  at s t a t i o n  3. S ix  a d d i t i o n a l  t o t a l -  
pressure tubes near the  duct w a l l  at a r ad ius  r a t i o  of 0.985 were used 
as a l i m i t  f o r  computing to t a l -p re s su re  d i s t o r t i o n .  The d i f f u s e r - i n l e t  
to ta l -pressure  survey rake  shown i n  f i g u r e  3 w a s  p re sen t  during the  e n t i r e  
test  and t h e  s t a t i o n  4 rake  w a s  used only f o r  computing mass-flow r a t i o .  

RESULTS AND DISCUSSION 

I n l e t  Flow F i e l d  

As discussed i n  r e fe rence  5, the  l o c a l  Mach number and t o t a l  p re s su re  
ahead o f  t h e  i n l e t  were very near ly  equa l  t o  f ree-s t ream values .  The 
l o c a l  flow angu la r i ty  a t  zero angle  of a t t a c k  w a s  near ly  a l i n e d  wi th  t h e  

ho r i zon ta l  ax i s ,  or downward 8- re lat ive t o  the  i n l e t  c e n t e r l i n e ,  as a 

r e s u l t  of t he  7- i n l e t  can t .  

lo 
2 

lo 
4 

Applicat ion t o  Reduced Engine Speeds 

Since most t u r b o j e t s  r e q u i r e  a f t e rbu rn ing  i n  order t o  provide s u f f i -  
c i e n t  thrust  f o r  supersonic f l i g h t ,  engine r o t a t i v e  speed i s  not genera l ly  
varied t o  modulate t h r u s t .  
damage, o r  fa i lure ,  t h e  engine r o t a t i v e  speed w i l l  revert t o  i d l e  o r  more 
l i k e l y  t o  windmilling speed and t h e  a i r f l o w  t o  about one-half t h e  r a t e d  
value. The main concern is avoiding reg ions  of i n l e t  buzz o r  i n s t a b i l i t y  
and high values of t o t a l -p re s su re  d i s t o r t i o n  t h a t  could f o r c e  t h e  com- 
pressor i n t o  surge and des t ruc t ion .  

However, i n  an emergency such as flameout, 

Applicat ion t o  a f ixed  i n l e t  using a bypass f o r  matching r a t e d  engine 
a i r f low.  - Turbojet-engine a i r f l o w  schedules f o r  maximum o r  r a t ed ,  i d l e ,  
and windmilling r o t a t i v e  speeds a t  a 35,000-fOOt a l t i t ude  are shown i n  
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f i g u r e  5. An assumed bypass schedule that  e f f i c i e n t l y  matches t h e  i n l e t  
and the  maximum-engine-airflow c h a r a c t e r i s t i c s  i s  shown i n  order  t o  il- 
lustrate  app l i ca t ion  o f ' t h e  da t a  t o  a fixed-ramp i n l e t .  O f  s e v e r a l  pos- 
s i b l e  choices,  t he  bypass con t ro l  was assumed t o  be scheduled only w i t h  
f l i g h t  Mach number, a l t i t u d e ,  and temperature. Thus, whenever engine 
speed i s  reduced, such 8 s  a t  flameout, the bypass area o r  p s i t i e n  r e m i n s  
f i x e d  i n  the maximum-speed p o s i t i o n  and only var ies  as a i r p l a n e  speed 
changes. 

The bas i c  i n l e t  performance f o r  the various Mach numbers and ramp 
angles  i s  presented  i n  f i g u r e  6. Brief ly ,  increas ing  the ramp angle  from 
12" t o  220 decreased t h e  mass-flow r a t i o  by means of  shock s p i l l a g e  as 
intended; the l e v e l  of  pressure  recovery decreased appreciably at a Mach 
number of 2.0 and s l i g h t l y  a t  Mach 1.5. However, a t  i d l e  o r  windmill ing 
condi t ions pressure recovery is  unimportant. These r e s u l t s  w i l l  be dis-  
cussed more f u l l y  la ter .  

Inasmuch as the model used f o r  this inves t iga t ion  was  o r i g i n a l l y  
designed wi th  a f i x e d  12O ramp angle,  modification t o  a more optimum raup 
angle, say iP, f o r  a iviacn number of 2.0 without a d i f fuse r - a rea  discon- 
t i n u i t y  was not feasible. Therefore,  the lZO-ranrp-angle i n l e t  i n  con- 
junc t ion  wi th  t h e  bypass schedule is taken as a s u i t a b l e  matching com- 
b ina t ion  f o r  the maximum- or  ra ted-rotat ive-speed a i r f lows ,  and t h e  ramp 
angle i s  assumed t o  vary only f o r  reduced r o t a t i v e  speeds. 

Corrected-weight-flow requirements fo r  maximum, i d l e ,  and windmill ing 
engine speeds i n  conjunction wi th  a bypass schedule are superimposed on 
the  da t a  o f  f i g u r e  6. A t  Mach 2.0 t h e  stable range of mass-flow r a t i o  f o r  
e i t h e r  the design 12' ramp or  the  17O ramp is  not  s u f f i c i e n t  t o  s a t i s f y  
i d l e  o r  windm,illing r e q u i r e w n t s .  
s table-f low reg ion  by the 2 2 O  ramp at a to ta l -pressure  d i s t o r t i o n  s l i g h t l y  
less than  f o r  t h e  rated-speed condi t ion.  S imi la r  results are ind ica t ed  
a t  other f l i g h t  Mach numbers. 
t e s t ed ,  ramp angie  could be scnedulea wit'n engine speed SO t h a t  matcning 
f o r  id le  o r  windmilling condi t ions would occur at a des i r ed  degree of 
s u b c r i t i c a l  opera t ion  o r  s o  that a l imi t ing  d i s t o r t i o n  value would not be  
exceeded. For i n l e t s  without i n t e r n a l  contract ion,  a simple normal-shock 
sensing con t ro l  could be used. 

These requirements are sat isf ied i= a 

Although only f ixed-angle  ramps were 

A comparison of t he  to t a l -p re s su re  d i s t o r t i o n  parameter, AP/Pav, at 
s t a t i o n  3 w i t h  values fo r  three-dimensional tu rbulen t  p i p e  f low (ref. 6)  
is  shown i n  f i g u r e  7 f o r  a rad ius  r a t i o  of  0.985 (equal  t o  that  used a t  
the  s t a t i o n  3 r ake ) .  The d i s t o r t i o n  values f o r  each ramp angle  f o r  sub- 
c r i t i c a l  f low followed t h e  genera l  t rend  of reduced d i s t o r t i o n  as cor-  
r e c t e d  weight f low w a s  decreased i n  accord wi th  re ference  6, although t h e  
absolu te  values of d i s t o r t i o n  d i f f e r e d  somewhat. Those f o r  t h e  22' ramp 
were higher  than pipe-flow values  over the range of Mach numbers tested. 
As  d i scussed  previously,  t he  d i s t o r t i o n  levels at windmill ing condi t ions  
were somewhat lower than those f o r  r a t e d  spee2. 
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The e f f e c t  of shock s p i l l a g e  on s i d e  fo rce  w a s  not determined. How- 
ever, a i rp l ane  s t a b i l i t y ,  such as yawing moment, could be a f f e c t e d  depend- 
i n g  on r e l a t i v e  s p i l l a g e s  of the i n l e t s ,  i n l e t  o r i en ta t ion ,  and d i s t ance  
from t h e  center  of g rav i ty .  

Applicat ion t o  a variable-angle-ramp i n l e t .  - If a var iable-angle  
ramp i s  used s o  t h a t  e f f i c i e n t  thrust-minus-drag performance i s  obtained 
over t h e  Mach number range f o r  r a t e d  engine condi t ions,  t he  same p r i n c i p l e  
of increasing ramp angle  i n  order  t o  provide buzz-free i n l e t  opera t ion  f o r  
reduced r o t a t i v e  speeds could be appl ied .  

If, f o r  example, e f f i c i e n t  matching occurred f o r  a ramp angle  of 17' 
at a Mach number of 2.0 and 12O a t  Mach 1.5, the ramp-angle increases  f o r  
reduced engine speed would be superimposed on t h i s  schedule .  The co'n- 
vent ional  method would be  t o  vary the i n t e r n a l  po r t ion  of  t he  ramp wi th in  
the d i f f u s e r  as the compression-surface angle  changes and thus r e t a i n  a 
f a i r e d  d i f f u s e r  sur face  and reduced lo s ses  f o r  the e f f i c i e n t  matching 
por t ion .  However, t he  r e s u l t s  presented  he re in  ind ica t e  t h a t  t h e  fa i red 
diffuser su r face  is  not necessary f o r  the reduced-engine-speed s i t u a t i o n .  
Thus, only t h e  f r o n t  p a r t  of t he  ramp needs t o  be va r i ab le  f o r  ramp angles  
greater than those f o r  e f f i c i e n t  matching. Obviously, a much simplified 
design r e su l t s  if t h e  e n t i r e  range of ramp-angle v a r i a t i o n  can be ac-  
e o q l i s h e d  wi th  the  rear p o r t i o n  of  the ramp wi th in  the  d i f f u s e r  remaining 
i n  €I f i x e d  pos i t i on .  
wi th  t h e  sudden-expansion s e c t i o n  i n  the diffuser  are important.  

I n  this  case pressure-recovery l o s s e s  a s soc ia t ed  

I n l e t  Performance wi th  a Sudden Expansion i n  the  Dif fuser  

Peak to ta l -pressure  recovery and maximum mass-flow r a t i o .  - A t  a 
f l i g h t  Mach number of  2.0, peak pressure  recovery decreased r ap id ly  from 
0.865 f o r  the 12' ramp t o  0.74 f o r  t h e  22O ramp ( f i g .  6 ( a ) ) .  About 0.03 
Po 
f o r  the 22' ramp. The t o t a l  pressure-recovery decrease as ramp angle  
var ied from 12O t o  22O was less severe at lower f l i g h t  Mach numbers: 
0.965 t o  0.925 a t  a Mach number of  1 .7  and 0.987 t o  0.964 at Mach 1.5 
( f i g s .  6(b)  and ( c ) ) .  A t  Mach 2.0 an  ind ica t ion  of t he  d i f f u s e r  l o s s  
can be approximated by comparing the t h e o r e t i c a l  oblique-plus-normal- 
shock pressure  recovery w i t h  t h e  peak recovery.  
0.02 Po f o r  the 12O ramp t o  0.115 Po f o r  t h e  22O raw. Shock detachment 
precludes such comparison at lower Mach numbers. 
to ta l -pressure  loss due t o  t h e  sudden expansion as computed from 
incompressible-flow r e l a t i o n s  is shown i n  f igu re  6(a) t o  vary from about 
0.01 Po 

of t h i s  reduct ion is  a t t r i b u t a b l e  t o  the  decrease i n  shock recovery 

T h i s  l o s s  increased from 

The magnitude of  the 

f o r  t h e  1 7 O  raw t o  0.05 PO f o r  the 220 ramp. 

The reduct ion  of s u p e r c r i t i c a l  mass-flow r a t i o  w i t h  increas ing  ramp 
angle was pr imar i ly  due t o  oblique-shock s p i l l a g e .  The minimum o r  

I 



s u p e r c r i t i c a l  bow-shock s p i l l a g e  a l s o  contr ibuted t o  mass-flow-ratio 
changes. Inasmuch as the i n l e t  was overcontracted f o r  each ramp p o s i t i o n  
and operated wi th  a choked t h r o a t  when supe rc r i t i ca l ,  the mass flow 
through the  t h r o a t  depended on the average t o t a l  p ressure  and area, which 
were not unique funct ions of ramp angle  because of secondary e f f e c t s  such 
as separa t ion .  A stable s u b c r i t i c a l  range of mass-flow r a t i o  e x i s t e d  f o r  
each Mach number and ramp angle  invest igated.  For some cases  the s t a b l e  
range decreased s l i g h t l y  w i t h  increas ing  ramp angle .  

*Tine small loss i n  peak to ta l -pressure  recovery at a Mach number of 
1.5 was obtained wi th  the  same sudden-expansion area r a t i o  and the same 
order  of throat Mach n u d e r  as thzt tested a t  YIcC 2.C. Emever,  a t  
Mach 2.0 (and t o  a lesser ex ten t  a t  Mach 1.7) separa t ion  of t h e  ramp 
boundary l a y e r  increased progressively as mass-flow r a t i o  decreased. This 
separa t ion  is shown q u a l i t a t i v e l y  by the schl ie ren  photographs of f i g u r e  
8. The presence of t h i s  separated (low-energy) flow probably reduced t h e  
e f f e c t  of b leed  flow and thus r e t a ined  a high dumping l o s s  i n  the  sudden- 
expansion sec t ion .  According t o  pressure- r i se  c r i t e r i a  f o r  shock-induced 
separat ion,  such as presented i n  reference 7, the  normal shock f o r  a ramp 
aogle  of 22O at  a Mach n u d e r  of 2.0 wc?ulS n o t  generall.,. czzse s e s ~ a t l z n .  
It is  not known whether t h e  observed separat ion i s  due t o  e x t e r n a l  e f f e c t s  
or  t o  the  p re s su re  rise caused by t h e  d i f fuser -a rea  d i scon t inu i ty  feeding 
forward . 

The l o s s e s  i n  the  sudden-expansion sec t ion  were probably l a r g e  f o r  
maximum mass flow, s ince  the  t h r o a t  Mach numbers approached 1 (choked 
t h r o a t )  and t h e  bleed mass-flow r a t i o s  were r e l a t i v e l y  small and ine f fec -  
t i v e .  As i n l e t  mass-flow r a t i o  was reduced and t h e  Mach number i n  the  
s t e p  o r  sudden-expansion reg ion  was decreased, bleed flow increased as 
b leed-s lo t  p re s su re  increased, and thus,  t h e  dumping l o s s  decreased. 
Tnis t rend  is  reasonably evident a t  Mach numbers of 1.7 and 1.5 where 
peak recovery values f o r  t h e  17O and 22O ramps approach those f o r  t h e  
12O ramp. 

The r e f l exed  reg ion  of t h e  curve f o r  the 22O ramp at Mach 1.7 was 
assoc ia ted  wi th  an o s c i l l a t i n g  bleed-chamber pressure  that w a s  not  en- 
countered a t  other  condi t ions.  Detachment of t h e  ramp obl ique shock seem 
t o  thicken the fuse lage  boundary layer ,  and t h i s  thickening causes a small 
obl ique shock ahead of t he  ramp leading edge ( f i g .  8) .  

Ef fec t  of varying bleed flow. - The e f fec t s  of bleed flow are b e s t  
shown f o r  a ramp angle  of 22O at Wch numbers of 1.5 and 1.7. Figure 9 (a )  
compares the  performance over a range of mass-flow r a t i o s  both wi th  and 
without ducted bleed flow (see a l s o  f i g .  6 ( d ) ) .  The e f f e c t  of b leed  is  
small u n t i l  s u b c r i t i c a l  flow is a t t a i n e d  and, hence, t h e  t h r o a t  Mach num- 
ber is reduced. S ign i f i can t  increases  i n  to t a l -p re s su re  recovery were 
obtained w i t h  maximum bleed i n  t h e  s u b c r i t i c a l  region.  
t h e  data i n  f i g u r e  9 show l i t t l e  e f f e c t  of bleed flow because the  mass-flow 

The remainder of 



r a t i o  mq/q  
flow region.  

f o r  which t h e  b leed  flow w a s  var ied  is  near the c r i t i c a l -  

Performance a t  Mach number of 0.66. - The da ta  shown i n  f i g u r e  6(d) 
a t  a f ree-s t ream Mach number of 0.66 are not  i n  the  realm of  app l i ca t ion  
bu t  are of  i n t e r e s t  because of t he  shock-free e x t e r n a l  f low. For t h e  
range of  mass-flow r a t i o s  shown, the  th roa t  Mach number va r i e s  from near ly  
1 t o  about 0.11. Re la t ive ly  e f f i c i e n t  performance, f o r  example, 
p ~ / p o  >0.95, occurred when the  th roa t  Mach number w a s  lower than  0.60, 
which somewhat c o r r e l a t e s  wi th  t h e  r e su l t s  of re ference  3, which showed 
good performance a t  similar d i f f u s e r - i n l e t  Mach numbers. 

I n l e t  t o t a l -p re s su re  p r o f i l e s .  - A s  shown by the  d i f f u s e r - i n l e t  
( s t a t i o n  2) to ta l -pressuke  p r o f i l e s  i n  f i g u r e  10, low-energy flow e x i s t e d  
i n  the step o r  base of t h e  ramp region  and increased i n  ex ten t  as the  ramp 
angle was var ied  from 12' t o  22O. If t h e  rake  s t a t i c -p res su re  t ap  i s  used 
as a guide, these  reg ions  of pressure  l e s s  than s t a t i c  are separa ted  or  
exh ib i t  reversed flow. Other instrumentat ion,  such as t h e  claw-type three-  
d i r e c t i o n a l  P i to t - tube  rake  shown i n  f i g u r e  l ( b )  i n  t h e  ramp cusp and 
bleed-chamber P i t o t  tubes,  d id  not give any conclusive ind ica t ion  of 
c i r c u l a t i o n  or  vortex-type flow. 

Dif fuser -ex i t  t o t a l -p re s su re  contours.  - I n  add i t ion  t o  the o v e r - a l l  
t o t a l -p re s su re  d i s t o r t i o n  at t h e  d i f f u s e r  exit  the  d i s t r i b u t i o n  of t o t a l  
pressure i s  a l s o  of i n t e r e s t .  The d i f fuse r - ex i t  contours ( s e l e c t e d  con- 
tours  are shown i n  f i g .  11) indica ted  no reg ions  of separa ted  flow. 
Therefore, the separa ted  flow a t  t h e  d i f f u s e r  i n l e t  w a s  r e a t t a c h i n g  before  
reaching the  d i f fuse r  e x i t  o r  perhaps was more l i k e  a s t a t i o n a r y  bubble 
energized by the  th roa t  s l o t  and a c t i n g  as an aerodynamic d i f f u s e r  
sur face .  

CONCLUDING REMARKS 

The technique of ramp-angle v a r i a t i o n  wi th  a fixed-geometry subsonic 
d i f fuse r  may poss ib ly  have app l i ca t ion  as an in le t -engine  matching device 
if  s u f f i c i e n t l y  e f f i c i e n t .  The da ta  a t  a Mach number of  1.5 demonstrate 
that adequate t h r o a t  b leed  r e su l t s  i n  r e l a t i v e l y  e f f i c i e n t  performance f o r  
sudden-expansion area r a t i o s  of  near ly  2:l. Since t h e  t h r o a t  Mach numbers 
f o r  peak pressure  recovery were of t h e  same order  of magnitude f o r  f l i g h t  
Mach numbers of 1.5 t o  2.0 (choked t h r o a t  s u p e r c r i t i c a l l y  i n  each case) ,  
t he  l a r g e  pressure  lo s ses  a t  a Mach number of 2.0 are p r imar i ly  a t t r i b u t e d  
t o  the e f f e c t  of ramp boundary-layer s epa ra t ion  o r  low-energy flow on the  
e f f i c i ency  of t h e  sudden-expansion s e c t i o n  (and t o  some ex ten t  on inade- 
quate b l eed ) .  
expansion reg ion  by moving t h e  ratup base and s l o t  af t  and using an 
external-compression i n l e t  s o  t h a t  the  Mach number i n  t h e  s t e p  reg ion  is  
of  the order  of 0.60 may reduce the p o s s i b i l i t y  of the  sudden-expansion 

Permi t t ing  some i n i t i a l  d i f f u s i o n  p r i o r  t o  the  sudden- 



pressure  r ise inf luenc ing  ramp boundary-layer s epa ra t ion .  If on t h e  o the r  
hand t h e  low-energy air i s  due t o  ex te rna l  e f f e c t s ,  p e r f o r a t i o n  of and 
bleeding through t h e  ramp would c o n t r o l  boundary-layer separa t ion .  

A s i d e  i n l e t  having a two-dimensional compression su r face  and a t h r o a t  
.hl--,l --I-& -*e- L - - L - I I  
ULccu D L U U  W ~ D  I~CDWZU at  h c h  numbers of 0.66, 1.5, 1.7, and 2.0. The 12" 
compression ramp w a s  f a i r e d  i n t o  the  d i f fuse r  contour i n  the  conventional 
manner. 
forward of t h e  b leed  s l o t  r o t a t e d  and t h e  d i f f u s e r  contour af t  of t h e  s l o t  
region remained f ixed .  The resu l t -  
i ng  s t e p  inc reases  i n  d i f f u s e r  area i n  the r eg ion  of t h e  t h r o a t  s l o t  were 
1.24 and 1.73 times the  r e spec t ive  throat areas f o r  t h e  170 and 22' ramps. 
The fo l lowing  r e s u l t s  were obtained: 

However, f o r  ramp angles of 17O and 22O only t h e  ramp p o r t i o n  

The base of t h e  ramp w a s  cusp shaped. 

1. The co r rec t ed  weight flow captured by t h e  i n l e t  was reduced s u f f i -  
c i e n t l y  by shock s p i l l a g e  as ramp angle increased t o  s a t i s f y  t u r b o j e t  wind- 
mil l ing  a i r f low requirements. A s u b c r i t i c a l  stable range of mass-flow 
r a t i o s  w a s  also present  over t he  range of ramp angles  and Mach numbers 
t e s t e d  and was  not s i g n i f i c a n t l y  reduced by inc reas ing  ramp angle. 

2. Although l a r g e  regions of low-energy flow e x i s t e d  i n  the  ram 
base r eg ion  f o r  ramp angles of 17O and 220, no separa ted  flow was p resen t  
a t  t h e  d i f f u s e r  e x i t .  Flow d i s t o r t i o n s  at t h e  d i f f u s e r  e x i t  f o r  sub- 
c r i t i c a l  f low decreased as duct B c h  number was reduced. D i s to r t ions  a t  
engine windmilling flow f o r  ramp angles greater  than  12O were lower than  
those f o r  t h e  12O ramp angle a t  r a t e d  engine flow i n  s p i t e  of t he  area 
d i scon t inu i ty  t h a t  r e s u l t e d  as ramp angle increased. 

3. At a Mach number of 2.0, increasing the ramp angle  from 12O t o  
2 2 O  decreased peak pressure  recovery from 0.865 t o  0.74, and the decrease 
is a t t r i b u t e d  mostly t o  severe ramp boundary-layer s epa ra t ion  and decreased 
b leed  e f f ec t iveness  and p a r t l y  t o  decreased shock recovery. 
sponding decrease a t  a Mach number of 1 .7 ,  where sepa ra t ion  w a s  less 
severe,  was from 0.965 t o  0.925 and at Mach 1.5 only from 0.987 t o  0.964. 
Reducing t h e  amount of t h roa t  bleed s i g n i f i c a n t l y  increased  these  l o s s e s  
i n  t h e  s u b c r i t i c a l  reg ion  for ramp angles of 17' and 22O. 

The co r re -  

Lewis  F l i g h t  Propuls ion Laboratory 
Nat iona l  Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, October 8, 1957 
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(a) Three-quarter f ront  view. Model ro l led  90'; 
ramp angle, 22'. 

(b) Rear view of inlet throat  and ramp. Ramp angle, 
22'; cowl removed. 

Figure 1. - Model and ramp photographs. 
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(c) Rear view of inlet throat and ramp. Ramp angle 12'; 
cowl removed. 

(a) Rear view of Inlet throat and ramp. Ramp angle 17'; 
cowl removed. 

Figure 1. - Concluded. Model and ramp photographs. - 
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Figure 3. - Schematic sketch of ramp-angle var ia t ion  and throat-bleed-slot arrangements. 
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Flight Mach number 

Figure 5. - Engine and bypass airflow schedules. 
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Figure 6. - Continued. Inlet Performance. 
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Figure 6. - Continued. Inlet Performance. 
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Figure 6. - Concluded. Inlet performance. 
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Figure 7. - Comparison of dlstortions with pipe-flow va lues .  
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Figure 10. - Diffuser-inlet total-pressure profiles. 
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